

B.K. BIRLA CENTRE FOR EDUCATION

SARALA BIRLA GROUP OF SCHOOLS
A CBSE DAY-CUM-BOYS' RESIDENTIAL SCHOOL

PREBOARD-III EXAMINATION (2025-26)

PHYSICS (042) (SET-I)

Class: XII

Time: 3hrs

Date: 15.01.26

Max Marks: 70

Admission no:

Roll no:

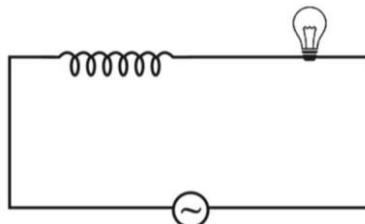
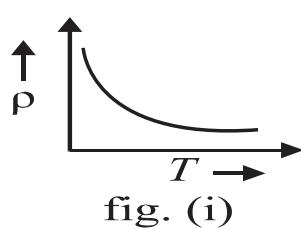
General Instructions:

- (1) There are 33 questions in all. All questions are compulsory.
- (2) This question paper has five sections: Section A, Section B, Section C, Section D and Section E.
- (3) All the sections are compulsory.
- (4) Section A contains sixteen questions, twelve MCQ and four Assertion Reasoning based of 1 mark each, Section B contains five questions of two marks each, Section C contains seven questions of three marks each, Section D contains two case study based questions of four marks each and Section E contains three long answer questions of five marks each.
- (5) There is no overall choice. However, an internal choice has been provided in one question in Section B, one question in Section C, one question in each CBQ in Section D and all three questions in Section E. You have to attempt only one of the choices in such questions.
- (6) Use of calculators is not allowed.
- (7) You may use the following values of physical constants where ever necessary:
i. $c = 3 \times 10^8 \text{ m/s}$, ii. $m_e = 9.1 \times 10^{-31} \text{ kg}$, iii. $e = 1.6 \times 10^{-19} \text{ C}$ iv. $\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1}$, v. $h = 6.63 \times 10^{-34} \text{ Js}$ vi. $\epsilon_0 = 8.854 \times 10^{-12} \text{ C}^2\text{N}^{-1}\text{m}^{-2}$ vii. Avogadro's number = 6.023×10^{23} per gram mole

SECTION-A

(16 Q X 1 M= 16 M)

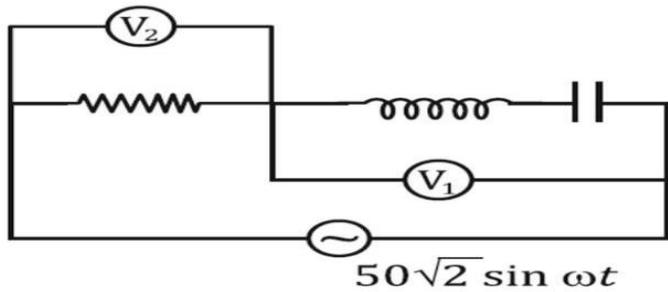
1. According to Coulomb's law, which is the correct relation for the following figure?

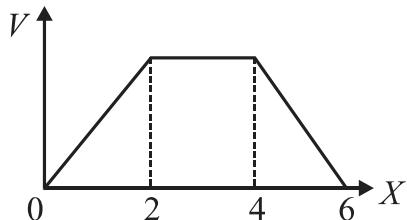
(a) $q_1 q_2 > 0$ (b) $q_1 q_2 < 0$ (c) $q_1 q_2 = 0$ (d) $1 > q_1 / q_2 > 0$

2. The electric potential on the axis of an electric dipole at a distance 'r' from it's centre is V. Then the potential at a point at the same distance on its equatorial line will be

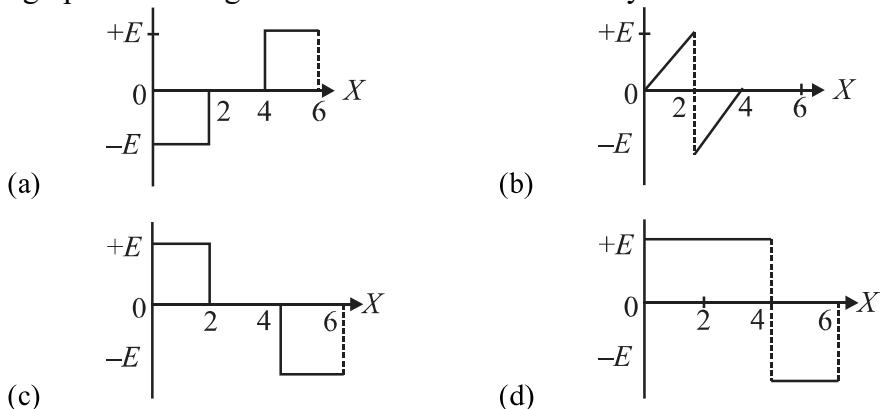
(a) $2V$ (b) $-V$ (c) $V/2$ (d) Zero


3. The temperature (T) dependence of resistivity of materials A and material B is represented by fig (i) and fig (ii) respectively. Identify material A and material B.

10. Which of the following statements about nuclear forces is not true?


- (a) The nuclear force between two nucleons falls rapidly to zero as their distance is more than a few femtometres.
- (b) The nuclear force is much weaker than the Coulomb force.
- (c) The force is attractive for distances larger than 0.8 fm and repulsive if they are separated by distances less than 0.8 fm.
- (d) The nuclear force between neutron-neutron, proton-neutron and proton-proton is approximately the same.

11. If the reading of the voltmeter V_1 is 40 V, then the reading of voltmeter V_2 is



- (a) 30 V
- (b) 58 V
- (c) 29 V
- (d) 15 V

12. The electric potential V as a function of distance X is shown in the figure.

The graph of the magnitude of electric field intensity E as a function of X is

For questions 13 to 16 two statements are given—one labelled Assertion (A) and the other labelled Reason (R). Select the correct answer to these questions from the codes (a), (b), (c) and (d) as given below.

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true and R is NOT the correct explanation of A
- (c) A is true but R is false
- (d) A is false and R is also false

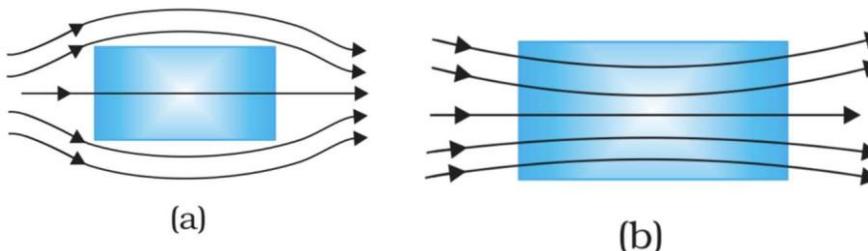
13. ASSERTION (A): The electrical conductivity of a semiconductor increases on doping.

REASON (R): Doping always increases the number of electrons in the semiconductor.

14. ASSERTION (A): In an interference pattern observed in Young's double slit experiment, if the separation (d) between coherent sources as well as the distance (D) of the screen from the coherent sources both are reduced to $1/3^{\text{rd}}$, then new fringe width remains the same.
 REASON (R): Fringe width is proportional to (d/D) .

15. Assertion (A): The photoelectrons produced by a monochromatic light beam incident on a metal surface have a spread in their kinetic energies.
 Reason(R): The energy of electrons emitted from inside the metal surface, is lost in collision with the other atoms in the metal.

16. Assertion (A): Bohr had to postulate that the electrons in stationary orbits around the nucleus do not radiate.
 Reason(R): According to classical physics all moving electrons radiate.


SECTION-B (5 Q X 2 M= 10 M)

17. Electromagnetic waves with wavelength

- (i) λ_1 is suitable for radar systems used in aircraft navigation.
- (ii) λ_2 is used to kill germs in water purifiers.
- (iii) λ_3 is used to improve visibility in runways during fog and mist conditions.

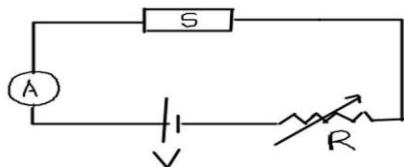
Identify and name the part of the electromagnetic spectrum to which these radiations belong. Also arrange these wavelengths in ascending order of their magnitude. 2

18. A uniform magnetic field gets modified as shown in figure when two specimens A and B are placed in it.

(i) Identify the specimen A and B.
 (ii) How is the magnetic susceptibility of specimen A different from that of specimen B? 2

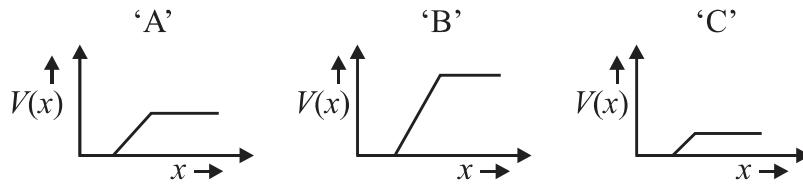
19. What is the nuclear radius of ^{125}Fe , if that of ^{27}Al is 3.6 fermi?

OR


The short wavelength limit for the Lyman series of the hydrogen spectrum is 913.4 \AA . Calculate the short wavelength limit for the Balmer series of the hydrogen spectrum. 2

20. A biconvex lens made of a transparent material of refractive index 1.25 is immersed in water of refractive index 1.33. Will the lens behave as a converging or a diverging lens? Justify your answer. 2

21. A narrow slit is illuminated by a parallel beam of monochromatic light of wavelength λ equal to 6000 \AA and the angular width of the central maximum in the resulting diffraction pattern is measured. When the slit is next illuminated by light of wavelength λ' , the angular width decreases by 30%. Calculate the value of the wavelength λ' . 2


SECTION-C (7 Q X 3 M= 21 M)

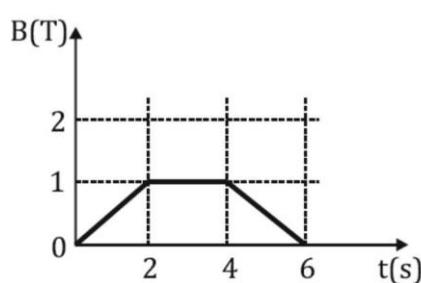
22. The figure shows a piece of pure semiconductor S in series with a variable resistor R and a source of constant voltage V. Should the value of R be increased or decreased to keep the reading of the ammeter constant, when semiconductor S is heated? Justify your answer

OR

The graph of potential barrier versus width of depletion region for an unbiased diode is shown in graph A. In comparison to A, graphs B and C are obtained after biasing the diode in different ways. Identify the type of biasing in B and C and justify your answer.

3

23. Two large, thin metal plates are parallel and close to each other. On their inner faces, the plates have surface charge densities of opposite signs and of magnitude $17.7 \times 10^{-22} \text{ C/m}^2$. What is electric field intensity E:


(a) in the outer region of the first plate, and
 (b) between the plates?

3

24. Two long straight parallel conductors carrying currents I_1 and I_2 are separated by a distance d. If the currents are flowing in the same direction, show how the magnetic field produced by one exerts an attractive force on the other. Obtain the expression for this force and hence define 1 ampere.

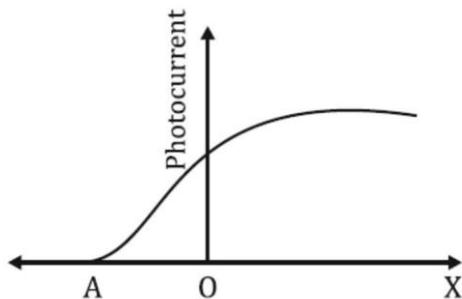
3

25. The magnetic field through a circular loop of wire, 12cm in radius and 8.5Ω resistance, changes with time as shown in the figure. The magnetic field is perpendicular to the plane of the loop. Calculate the current induced in the loop and plot a graph showing induced current as a function of time.

3

26. Radiation of frequency 10^{15} Hz is incident on three photosensitive surfaces A, B and C. Following observations are recorded:

Surface A: no photoemission occurs


Surface B: photoemission occurs but the photoelectrons have zero kinetic energy.

Surface C: photo emission occurs and photoelectrons have some kinetic energy.

3

Using Einstein's photo-electric equation, explain the three observations.

27. The graph shows the variation of photocurrent for a photosensitive metal

(a) What does X and A on the horizontal axis represent?

(b) Draw this graph for three different values of frequencies of incident radiation v_1, v_2 and v_3 ($v_3 > v_2 > v_1$) for the same intensity.

(c) Draw this graph for three different values of intensities of incident radiation I_1, I_2 and I_3 ($I_3 > I_2 > I_1$) having the same frequency.

28. The ground state energy of hydrogen atom is -13.6 eV. The photon emitted during the transition of electron from $n=3$ to $n=1$ state, is incident on a photosensitive material of unknown work function. The photoelectrons are emitted from the material with the maximum kinetic energy of 9 eV. Calculate the threshold wavelength of the material used. 3

SECTION-D (2 Q X 4 M = 8 M)

29. Case Study :

Read the following paragraph and answer the questions.

A number of optical devices and instruments have been designed and developed such as periscope, binoculars, microscopes and telescopes utilizing the reflecting and refracting properties of mirrors, lenses and prisms. Most of them are in common use. Our knowledge about the formation of images by the mirrors and lenses is the basic requirement for understanding the working of these devices.

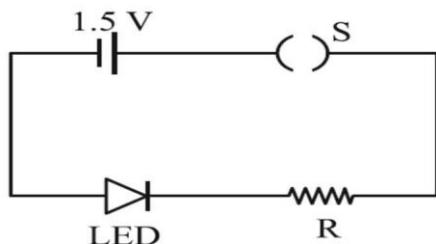
(i) Why the image formed at infinity is often considered most suitable for viewing. Explain 1

(ii) In modern microscopes multicomponent lenses are used for both the objective and the eyepiece. Why? 1

(iii) Write two points of difference between a compound microscope and an astronomical telescope
OR

(iii) Write two distinct advantages of a reflecting type telescope over a refracting type telescope. 2

30. Case study: Light emitting diode.


Read the following paragraph and answer the questions:

LED is a heavily doped P-N junction which under forward bias emits spontaneous radiation. When it is forward biased, due to recombination of holes and electrons at the junction, energy is released in the form of photons. In the case of Si and Ge diode, the energy released in recombination lies in the infrared region. LEDs that can emit red, yellow, orange, green and blue light are commercially available. The semiconductor used for fabrication of visible LEDs must at least have a band gap of 1.8 eV. The compound semiconductor Gallium Arsenide – Phosphide is used for making LEDs of different colours.

(i). Why are LEDs made of compound semiconductor and not of elemental semiconductors? 1

(ii) What should be the order of bandgap of an LED, if it is required to emit light in the visible range? 1

(iii) A student connects the blue coloured LED as shown in the figure. The LED did not glow when switch S is closed. Explain why? 2

OR

(iii) Draw V-I characteristic of a p-n junction diode in

(a) forward bias and (b) reverse bias

SECTION-E (3Q X 5 M= 15 M)

31. (a) Draw equipotential surfaces for (i) an electric dipole and (ii) two identical positive charges placed near each other.

(b) In a parallel plate capacitor with air between the plates, each plate has an area of $6 \times 10^{-3} \text{ m}^2$ and the separation between the plates is 3 mm.

(i) Calculate the capacitance of the capacitor.

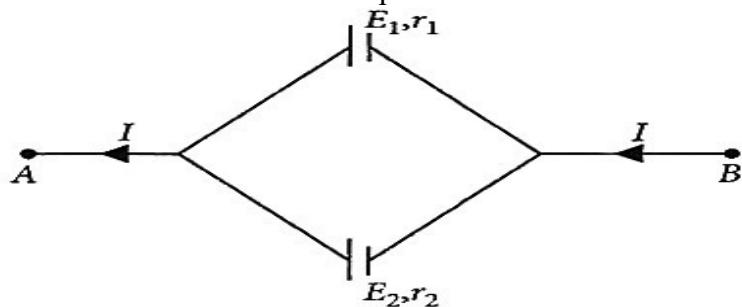
(ii) If the capacitor is connected to 100V supply, what would be the charge on each plate?

How would charge on the plate be affected if a 3 mm thick mica sheet of $k=6$ is inserted between the plates while the voltage supply remains connected? 5

OR

(a) Three charges $-q$, Q and $-q$ are placed at equal distances on a straight line. If the potential energy of the system of these charges is zero, then what is the ratio $Q: q$?

(b) (i) Obtain the expression for the electric field intensity due to a uniformly charged spherical shell of radius R at a point distant r from the centre of the shell outside it.

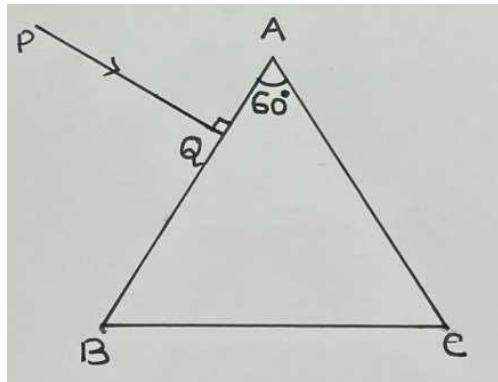

(ii) Draw a graph showing the variation of electric field intensity E with r , for $r > R$ and $r < R$.

32. (a) Explain the term drift velocity of electrons in a conductor. Hence obtain the expression for the current through a conductor in terms of drift velocity.

(b) Two cells of emfs E_1 and E_2 and internal resistances r and r respectively are connected in parallel as shown in the figure.

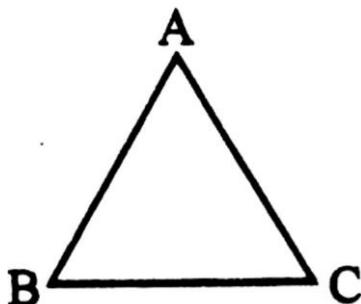
Deduce the expression for the

- i equivalent emf of the combination
- ii equivalent internal resistance of the combination
- iii potential difference between the points A and B.



OR

(a) State the two Kirchhoff's rules used in the analysis of electric circuits and explain them.
(b) Derive the equation of the balanced state in a Wheatstone bridge using Kirchhoff's laws. 5


33. (a) Draw the graph showing intensity distribution of fringes with phase angle due to diffraction through a single slit. What is the width of the central maximum in comparison to that of a secondary maximum? 5

(b) A ray PQ is incident normally on the face AB of a triangular prism of refracting angle 60° as shown in figure. The prism is made of a transparent material of refractive index. Trace the path of the ray as it passes through the prism. Calculate the angle of emergence and the angle of deviation.

OR

(a) Write two points of difference between an interference pattern and a diffraction pattern.
(b) (i) A ray of light incident on face AB of an equilateral glass prism, shows minimum deviation of 30° . Calculate the speed of light through the prism.

(ii) Find the angle of incidence at face AB so that the emergent ray grazes along the face AC.

ALL THE BEST